Exercise 64

Find the limits as $x \rightarrow \infty$ and as $x \rightarrow-\infty$. Use this information, together with intercepts, to give a rough sketch of the graph as in Example 12.

$$
y=x^{2}\left(x^{2}-1\right)^{2}(x+2)
$$

Solution

To find the y-intercept, plug in $x=0$ to the function.

$$
y=0^{2}\left(0^{2}-1\right)^{2}(0+2)=0
$$

Therefore, the y-intercept is $(0,0)$. To find the x-intercept(s), set $y=0$ and solve the equation for x.

$$
\begin{gathered}
x^{2}\left(x^{2}-1\right)^{2}(x+2)=0 \\
x^{2}(x+1)^{2}(x-1)^{2}(x+2)=0 \\
x=0 \quad \text { or } \quad x=-1 \quad \text { or } \quad x=1 \quad \text { or } \quad x=-2
\end{gathered}
$$

Therefore, the x-intercepts are $(0,0)$ and $(-1,0)$ and $(1,0)$ and $(-2,0)$. Calculate the limit of the function as $x \rightarrow \pm \infty$.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} y & =\lim _{x \rightarrow \infty} x^{2}\left(x^{2}-1\right)^{2}(x+2) \\
& =\lim _{x \rightarrow \infty} x^{2} \cdot x^{4}\left(1-\frac{1}{x^{2}}\right)^{2} \cdot x\left(1+\frac{2}{x}\right) \\
& =\lim _{x \rightarrow \infty} x^{7}\left(1-\frac{1}{x^{2}}\right)^{2}\left(1+\frac{2}{x}\right) \\
& =\lim _{x \rightarrow \infty} \frac{\left(1-\frac{1}{x^{2}}\right)^{2}\left(1+\frac{2}{x}\right)}{\frac{1}{x^{7}}} \\
& =\frac{(1-0)^{2}(1+0)}{0} \\
& =\infty
\end{aligned}
$$

In the second limit, make the substitution, $u=-x$, so that as $x \rightarrow-\infty, u \rightarrow \infty$.

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} y & =\lim _{u \rightarrow \infty}(-u)^{2}\left[(-u)^{2}-1\right]^{2}(-u+2) \\
& =\lim _{u \rightarrow \infty} u^{2}\left(u^{2}-1\right)^{2}(-u+2) \\
& =\lim _{u \rightarrow \infty} u^{2} \cdot u^{4}\left(1-\frac{1}{u^{2}}\right)^{2} \cdot u\left(-1+\frac{2}{u}\right) \\
& =\lim _{u \rightarrow \infty} u^{7}\left(1-\frac{1}{u^{2}}\right)^{2}\left(-1+\frac{2}{u}\right) \\
& =\lim _{u \rightarrow \infty} \frac{\left(1-\frac{1}{u^{2}}\right)^{2}\left(-1+\frac{2}{u}\right)}{\frac{1}{u^{7}}} \\
& =\frac{(1-0)^{2}(-1+0)}{0} \\
& =-\infty
\end{aligned}
$$

Below is a graph of the function versus x.

